
to be elicited from various sources, including design
documentation and source code. It is also necessary
to involve other designers and domain experts to val-
idate the architectural pattern as it is specified. For
this reason, although this is first step in the process,
the pattern itself will invariably be revised throughout
the process.

• Attack resistance analysis: In this step, we begin to
populate the contextualised attack pattern template
based on potential security concerns that may be as-
sociated with the pattern. This includes searching the
imported knowledge bases for the pattern structure
elements, and identifying attacker personas with the
ability to carry out the identified attack. If the ex-
isting attacker personas do not have either the capa-
bilities or motives for carrying out the attack, then it
may be necessary to create a new, more meaningful
attacker persona. The process for doing this is beyond
the scope of this paper, but is described in more detail
by [1].

• Ambiguity analysis: this involves eliciting potential
causes of the attack using the obstacle models in the
contextualised attack pattern. The threat and vulner-
ability elements act as initial leaf obstacles and, by
considering the attack from the perspective of the at-
tack persona, the leaf obstacles are abstracted to iden-
tify why these occur. As further obstacles are elicited,
these are refined to identify other potential threats and
vulnerabilities. As this model evolves then, where pos-
sible, probability values are assigned to obstacles, and
potential goal and responsibility links are assigned to
known system assets and roles referenced in the con-
textualised attack pattern.

• Weakness analysis: to understand the impact that the
environment has on the architectural pattern, we im-
port the contextualised attack pattern into CAIRIS,
and introduce the previously created architectural pat-
tern into the same environment as the attack pattern.
In addition to automatically generating diagrams such
as those shown in Figures 3 and 4, the damage po-
tential across the interfaces, channels, and untrusted
surfaces associated with architectural pattern are also
calculated. Where assets are associated with both the
architectural and contextualised attack pattern, po-
tential threats and vulnerabilities to the architectural
pattern are highlighted, and — where concern and re-
sponsibility links are common to both requirements
and obstacles — potential obstacles that obstruct ar-
chitectural patterns are highlighted. As the number of
potential obstacles might be large, these are ordered by
probability, where the most likely obstacles are listed
first.

After the final step, any identified threats and vulnerabil-
ities which are adequately treated by architectural pattern
requirements are marked by the designer, together with how
effective the treating requirement is. Similarly, goals which
are obstructed by candidate obstacles are also marked. At
this point, we repeat the process to refine the architectural
pattern based on new information about components, con-
nectors, assets, or requirements.

Component & Connector View

Goal
View

Asset 
View

Figure 3: Asset, Goal, and Component and Connec-
tor View of Policy Manager Architectural Pattern

3. EXAMPLE
To demonstrate our approach, we show how it can be

used to support the architectural risk analysis of the policy
framework for the EU FP 7 webinos project. webinos is
a federated software platform for running web applications
consistently and securely across mobile, PC, home media,
and in-car systems. More information about the project is
described in [22].

3.1 Architectural pattern
The Policy Manager architectural pattern illustrated in

Figure 3 specifies the policy framework developed for webi-
nos. The policy framework is summarised in [13], and it is
from this that the asset view was derived. To develop the
requirements view, it was necessary to review other sources
of information such as prototype code for the policy man-
agement software itself.

Following subsequent validation of this pattern with the
authors of [13], a component and connector view was devised
to illustrate how other webinos components might interact
with the Policy Manager component. In the component and
connector view in Figure 3, a software application (Discov-
ery Client) on a device may wish to discover other similar
applications running on other devices. However, before we-
binos’ discovery capabilities can be invoked, the Discovery
Module component needs to establish if the application is
authorised to access the requisite resources.

Once the architectural pattern was imported into CAIRIS,
the attack surface metrics were automatically calculated and
used to colour the component nodes in the component and
connector view. Shades of red are used to determine the
comparative size of the exploitable attack surface, where
components coloured with a darker shade have a larger sur-
face than those with a lighter shade.

3.2 Attack Resistance Analysis
For this example, we assumed that test APIs had been un-

intentionally introduced into the webinos platform. Based
on keywords associated with this reason, we search the CAPEC


